Functionalized graphene sheets as a versatile replacement for platinum in dye-sensitized solar cells.

نویسندگان

  • Joseph D Roy-Mayhew
  • Gerrit Boschloo
  • Anders Hagfeldt
  • Ilhan A Aksay
چکیده

Several techniques for fabricating functionalized graphene sheet (FGS) electrodes were tested for catalytic performance in dye-sensitized solar cells (DSSCs). By using ethyl cellulose as a sacrificial binder, and partially thermolyzing it, we were able to create electrodes which exhibited lower effective charge transfer resistance (<1 Ω cm(2)) than the thermally decomposed chloroplatinic acid electrodes traditionally used. This performance was achieved not only for the triiodide/iodide redox couple, but also for the two other major redox mediators used in DSSCs, based on cobalt and sulfur complexes, showing the versatility of the electrode. DSSCs using these FGS electrodes had efficiencies (η) equal to or higher than those using thermally decomposed chloroplatinic acid electrodes in each of the three major redox mediators: I (η(FGS) = 6.8%, η(Pt) = 6.8%), Co (4.5%, 4.4%), S (3.5%, 2.0%). Through an analysis of the thermolysis of the binder and composite material, we determined that the high surface area of an electrode, as determined by nitrogen adsorption, is consistent with but not sufficient for high performing electrodes. Two other important considerations are that (i) enough residue remains in the composite to maintain structural stability and prevent restacking of FGSs upon the introduction of the solvent, and (ii) this residue must not disperse in the electrolyte.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells.

When applied on the counter electrode of a dye-sensitized solar cell, functionalized graphene sheets with oxygen-containing sites perform comparably to platinum (conversion efficiencies of 5.0 and 5.5%, respectively, at 100 mW cm(-2) AM1.5G simulated light). To interpret the catalytic activity of functionalized graphene sheets toward the reduction of triiodide, we propose a new electrochemical ...

متن کامل

Dye-Sensitized Solar Cells Based on Hierarchically Structured John Beach, Washington University in St. Louis, 2012 SURF Fellow Advisor: Prof. Zhiqun Lin; Mentor: Dr. Xukai Xin

Introduction Dye-sensitized solar cells (DSSCs) are widely recognized as a promising alternative and cost-effective technology for solar-toelectric energy conversion. Current silicon solar cells are limited due to their lack of flexibility, high cost of manufacturing and installation, and heavy weight. Alternatively, dye-sensitized solar cells have a very simple fabrication process, low fabrica...

متن کامل

Characteristics of PANi/rGO Nanocomposite as Protective Coating and Catalyst in Dye-sensitized Solar Cell Counter Electrode Deposited on AISI 1086 Steel Substrate

One of the possibilities to mass-produce dye-sensitized solar cell (DSSC) device is if it could be embedded to the area atop metal roof. However, the use of metal substrate is constrained by the corrosion caused by the electrolyte solution used in the DSSC device such as iodide/tri-iodide (I-/I3-). In this study, we propose the utilization of polyaniline/reduced graphene o...

متن کامل

p-Doped three-dimensional graphene nano-networks superior to platinum as a counter electrode for dye-sensitized solar cells.

We report CVD-grown p-doped three-dimensional graphene nano-networks (3D-GNs) that provide superior performance to Pt as a counter electrode material in dye sensitized solar cells (DSSCs). The 3D-GN based DSSC exhibits a maximum photoconversion efficiency of 8.46%, which is 6.01% greater than that exhibited by Pt based DSSCs.

متن کامل

In-situ electrochemically deposited polypyrrole nanoparticles incorporated reduced graphene oxide as an efficient counter electrode for platinum-free dye-sensitized solar cells

This paper reports a rapid and in-situ electrochemical polymerization method for the fabrication of polypyrrole nanoparticles incorporated reduced graphene oxide (rGO@PPy) nanocomposites on a ITO conducting glass and its application as a counter electrode for platinum-free dye-sensitized solar cell (DSSC). The scanning electron microscopic images show the uniform distribution of PPy nanoparticl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 4 5  شماره 

صفحات  -

تاریخ انتشار 2012